Orbitofrontal dopamine depletion upregulates caudate dopamine and alters behavior via changes in reinforcement sensitivity.
نویسندگان
چکیده
Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia.
منابع مشابه
Differential Contributions of Dopamine and Serotonin to Orbitofrontal Cortex Function in the Marmoset
We have shown previously that the inhibitory control functions of the orbitofrontal cortex (OFC) are disrupted by serotonin, but not dopamine depletions. However, both dopamine and serotonin terminals and receptors are present within the OFC and thus the aim of the present study was to determine the differential contributions of these neurotransmitters to orbitofrontal function. OFC and dopamin...
متن کاملGreater Ethanol-Induced Locomotor Activation in DBA/2J versus C57BL/6J Mice Is Not Predicted by Presynaptic Striatal Dopamine Dynamics
A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strain...
متن کاملStriatal D1 and D2 signaling differentially predict learning from positive and negative outcomes
The extent to which we learn from positive and negative outcomes of decisions is modulated by the neurotransmitter dopamine. Dopamine neurons burst fire in response to unexpected rewards and pause following negative outcomes. This dual signaling mechanism is hypothesized to drive both approach and avoidance behavior. Here we test a prediction deriving from a computational reinforcement learning...
متن کاملWhat is the role of orbitofrontal cortex in dopamine dependent reinforcement learning ? !
Orbitofrontal cortex (OFC) has been implicated in signalling reward expectancies, but its exact role , and how this differs from that the role of ventral striatum (VS), is an open question. One idea is that VS is the seat of value learning in model-free, dopamine-dependent reinforcement learning, while OFC represents values in dopamine-independent model-based learning. However, recent results [...
متن کاملDopamine- induced hypophagia is mediated via NMDA and mGlu1 receptors in chicken
Background: Feeding behavior is regulated by a complex network which interacts via diverse signals from central and peripheral tissues. It is known dopaminergic and glutamatergic systems have crucial role on food intake regulation but scarce reports exist on their interaction in appetite regulation in broilers. OBJECTIVES: The present study was designed to examine the role of glutamatergic syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 22 شماره
صفحات -
تاریخ انتشار 2014